Net wor k Wor ki ng G oup N. Borenstein

Request for Comments: 1521 Bel | core
bsol etes: 1341 N. Freed
Cat egory: Standards Track Sept enber 1993

MIME (Multipurpose Internet Mail Extensions) Part One:

Mechanisms for Specifying and Describing
the Format of Internet Message Bodies

Status of thisMemo

This RFC specifies an Internet standards track protocol for the Internet community, and requests discussion
and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol
Standards’ for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

STD 11, RFC 822 defines a message representation protocol which specifies considerable
detail about message headers, but which leaves the message content, or message body, as
flat ASCII text. This document redefines the format of message bodies to allow multi-
part textual and non-textual message bodies to be represented and exchanged without
loss of information. Thisis based on earlier work documented in RFC 934, STD 11, and
RFC 1049, but extends and revises that work. Because RFC 822 said so little about
message bodies, this document is largely orthogonal to (rather than a revision of) RFC
822.

In particular, this document is designed to provide facilities to include multiple objects in
a single message, to represent body text in character sets other than US-ASCII, to
represent formatted multi-font text messages, to represent non-textual material such as
images and audio fragments, and generaly to facilitate later extensions defining new
types of Internet mail for use by cooperating mail agents.

This document does NOT extend Internet mail header fields to permit anything other
than US-ASCII text data. Such extensions are the subject of a companion document
[RFC -1522].

This document is a revision of RFC 1341. Significant differences from RFC 1341 are
summarized in Appendix H.

Borenstein & Freed [Pagei]

THISPAGE INTENTIONALLY LEFT BLANK.

The table of contents should be inserted after this page.

Borenstein & Freed [Pageiii]

RFC 1521 MIME September 1993

1 I ntroduction

Since its publication in 1982, RFC 822 [RFC-822] has defined the standard format of
textual mail messages on the Internet. Its success has been such that the RFC 822 format
has been adopted, wholly or partially, well beyond the confines of the Internet and the
Internet SMTP transport defined by RFC 821 [RFC-821]. As the format has seen wider
use, a number of limitations have proven increasingly restrictive for the user community.
RFC 822 was intended to specify a format for text messages. As such, non-text
messages, such as multimedia messages that might include audio or images, are simply
not mentioned. Even in the case of text, however, RFC 822 is inadequate for the needs
of mail users whose languages require the use of character sets richer than US ASCII
[US-ASCII]. Since RFC 822 does not specify mechanisms for mail containing audio,
video, Asian language text, or even text in most European languages, additional
specifications are needed.

One of the notable limitations of RFC 821/822 based mail systems is the fact that they
limit the contents of electronic mail messages to relatively short lines of seven-bit ASCII.
This forces users to convert any non-textual data that they may wish to send into seven-
bit bytes representable as printable ASCII characters before invoking a local mail UA
(User Agent, a program with which human users send and receive mail). Examples of
such encodings currently used in the Internet include pure hexadecimal, uuencode, the
3-in-4 base 64 scheme specified in RFC 1421, the Andrew Toolkit Representation
[ATK], and many others.

The limitations of RFC 822 mail become even more apparent as gateways are designed
to allow for the exchange of mail messages between RFC 822 hosts and X.400 hosts.
X.400 [X400] specifies mechanisms for the inclusion of non-textual body parts within
electronic mail messages. The current standards for the mapping of X.400 messages to
RFC 822 messages specify either that X.400 non-textual body parts must be converted to
(not encoded in) an ASCII format, or that they must be discarded, notifying the RFC 822
user that discarding has occurred. This s clearly undesirable, as information that a user
may wish to receive is lost. Even though a user’s UA may not have the capability of
dealing with the non-textual body part, the user might have some mechanism external to
the UA that can extract useful information from the body part. Moreover, it does not
allow for the fact that the message may eventually be gatewayed back into an X.400
message handling system (i.e., the X.400 message is "tunneled" through Internet mail),
where the non-textual information would definitely become useful again.

This document describes several mechanisms that combine to solve most of these
problems without introducing any serious incompatibilities with the existing world of
RFC 822 mail. In particular, it describes:

1. A MIME-Version header field, which uses a version number to declare a message to
be conformant with this specification and allows mail processing agents to
distinguish between such messages and those generated by older or non-
conformant software, which is presumed to lack such afield.

Borenstein & Freed [Page 1]

RFC 1521 MIME September 1993

2. A Content-Type header field, generalized from RFC 1049 [RFC-1049], which can be
used to specify the type and subtype of datain the body of a message and to fully
specify the native representation (encoding) of such data.

2a A "text" Content-Type value, which can be used to represent textual
information in a number of character sets and formatted text description
languages in a standardized manner.

2.b. A "multipart" Content-Type value, which can be used to combine several
body parts, possibly of differing types of data, into a single message.

2.c. An "application" Content-Type value, which can be used to transmit
application data or binary data, and hence, among other uses, to
implement an electronic mail file transfer service.

2.d. A "message" Content-Type value, for encapsulating another mail message.
2.e An"image" Content-Type value, for transmitting still image (picture) data.
2f. An"audio" Content-Type value, for transmitting audio or voice data.

2.g. A "video" Content-Type value, for transmitting video or moving image
data, possibly with audio as part of the composite video data format.

3. A Content-Transfer-Encoding header field, which can be used to specify an auxiliary
encoding that was applied to the data in order to alow it to pass through mail
transport mechanisms which may have data or character set limitations.

4. Two additional header fields that can be used to further describe the data in a message
body, the Content-1D and Content-Description header fields.

MIME has been carefully designed as an extensible mechanism, and it is expected that
the set of content-type/subtype pairs and their associated parameters will grow
significantly with time. Several other MIME fields, notably including character set
names, are likely to have new values defined over time. In order to ensure that the set of
such values is developed in an orderly, well-specified, and public manner, MIME defines
a registration process which uses the Internet Assigned Numbers Authority (IANA) as a
central registry for such values. Appendix E provides details about how IANA
registration is accomplished.

Finally, to specify and promote interoperability, Appendix A of this document provides a
basic applicability statement for a subset of the above mechanisms that defines aminimal
level of "conformance” with this document.

HISTORICAL NOTE: Several of the mechanisms described in this

document may seem somewhat strange or even baroque at first reading. It
is important to note that compatibility with existing standards AND

Borenstein & Freed [Page 2]

RFC 1521 MIME September 1993

robustness across existing practice were two of the highest priorities of the
working group that developed this document. In particular, compatibility
was always favored over elegance.

MIME was first defined and published as RFCs 1341 and 1342 [RFC-1341] [RFC-1342].
This document is arelatively minor updating of RFC 1341, and is intended to supersede
it. The differences between this document and RFC 1341 are summarized in Appendix
H. Please refer to the current edition of the "IAB Official Protocol Standards® for the
standardization state and status of this protocol. Several other RFC documents will be
of interest to the MIME implementor, in particular [RFC 1343], [RFC-1344], and
[RFC-1345].

2 Notations, Conventions, and Generic BNF Grammar

This document is being published in two versions, one as plain ASCII text and one as
PostScript! . The latter is recommended, though the textual contents are identical. An
Andrew-format copy of this document is also available from the first author (Borenstein).

Although the mechanisms specified in this document are all described in prose, most are
also described formally in the modified BNF notation of RFC 822. Implementors will
need to be familiar with this notation in order to understand this specification, and are
referred to RFC 822 for a complete explanation of the modified BNF notation.

Some of the modified BNF in this document makes reference to syntactic entities that are
defined in RFC 822 and not in this document. A complete formal grammar, then, is
obtained by combining the collected grammar appendix of this document with that of
RFC 822 plus the modifications to RFC 822 defined in RFC 1123, which specifically
changes the syntax for ‘return’, ‘date’ and ‘mailbox’.

The term CRLF, in this document, refers to the sequence of the two ASCII characters CR
(13) and LF (10) which, taken together, in this order, denote a line break in RFC 822
mail.

The term "character set” is used in this document to refer to a method used with one or
more tables to convert encoded text to a series of octets. This definition is intended to
allow various kinds of text encodings, from simple single-table mappings such as ASCI|
to complex table switching methods such as those that use 1SO 2022's techniques.
However, a MIME character set name must fully specify the mapping to be performed.

The term "message”, when not further qualified, means either the (complete or "top-
level") message being transferred on a network, or a message encapsulated in a body of

type "message".

1 PostScript is atrademark of Adobe Systems Incorporated.

Borenstein & Freed [Page 3]

RFC 1521 MIME September 1993

The term "body part”, in this document, means one of the parts of the body of a multipart
entity. A body part has a header and a body, so it makes sense to speak about the body of
a body part.

The term "entity", in this document, means either a message or a body part. All kinds of
entities share the property that they have a header and a body.

The term "body", when not further qualified, means the body of an entity, that is the body
of either amessage or of abody part.

NOTE: The previous four definitions are clearly circular. This is
unavoidable, since the overall structure of a MIME message is indeed
recursive.

In this document, all numeric and octet values are given in decimal notation.

It must be noted that Content-Type values, subtypes, and parameter names as defined in
this document are case-insensitive. However, parameter values are case-sensitive unless
otherwise specified for the specific parameter.

FORMATTING NOTE: This document has been carefully formatted for
ease of reading. The PostScript version of this document, in particular,
places notes like this one, which may be skipped by the reader, in a
smaller, italicized, font, and indents it aswell. In the text version, only the
indentation is preserved, so if you are reading the text version of this you
might consider using the PostScript version instead. However, all such
notes will be indented and preceded by "NOTE:" or some similar
introduction, even in the text version.

The primary purpose of these non-essential notes is to convey information
about the rationale of this document, or to place this document in the
proper historical or evolutionary context. Such information may be
skipped by those who are focused entirely on building a conformant
implementation, but may be of use to those who wish to understand why
this document iswritten asit is.

For ease of recognition, all BNF definitions have been placed in a fixed-
width font in the PostScript version of this document.

Borenstein & Freed [Page 4]

RFC 1521 MIME September 1993

3 TheMIME-Version Header Field

Since RFC 822 was published in 1982, there has really been only one format standard for
Internet messages, and there has been little perceived need to declare the format standard
in use. This document is an independent document that complements RFC 822.
Although the extensions in this document have been defined in such a way as to be
compatible with RFC 822, there are still circumstances in which it might be desirable for
a mail-processing agent to know whether a message was composed with the new
standard in mind.

Therefore, this document defines a new header field, "MIME-Version", which is to be
used to declare the version of the Internet message body format standard in use.

Messages composed in accordance with this document MUST include such a header
field, with the following verbatim text:

M ME-Version: 1.0

The presence of this header field is an assertion that the message has been composed in
compliance with this document.

Since it is possible that a future document might extend the message format standard
again, aformal BNF is given for the content of the MIME-Version field:

version := "M Me-Version" ":" 1*DIGT "." 1*DIAT

Thus, future format specifiers, which might replace or extend "1.0", are constrained to be
two integer fields, separated by a period. If a message is received with a MIME-version
value other than "1.0", it cannot be assumed to conform with this specification.

Note that the MIME-Version header field is required at the top level of a message. It is
not required for each body part of a multipart entity. It is required for the embedded
headers of a body of type "message” if and only if the embedded message is itself
claimed to be MIME-conformant.

It is not possible to fully specify how a mail reader that conforms with MIME as defined
in this document should treat a message that might arrive in the future with some value of
MIME-Version other than "1.0". However, conformant software is encouraged to check
the version number and at least warn the user if an unrecognized MIME-version is
encountered.

It is a'so worth noting that version control for specific content-types is not accomplished
using the MIME-Version mechanism. In particular, some formats (such as
application/postscript) have version numbering conventions that are internal to the
document format. Where such conventions exist, MIME does nothing to supersede them.
Where no such conventions exist, a MIME type might use a "version" parameter in the
content-type field if necessary.

Borenstein & Freed [Page 5]

RFC 1521 MIME September 1993

NOTE TO IMPLEMENTORS: All header fields defined in this document, including
MIME-Version, Content-type, etc., are subject to the genera syntactic rules for header
fields specified in RFC 822. In particular, all can include comments, which means that
the following two MIME-Version fields are equivalent:

M ME-Version: 1.0
M ME-Version: 1.0 (Cenerated by GBD-killer 3.7)

4 The Content-Type Header Field

The purpose of the Content-Type field is to describe the data contained in the body fully
enough that the receiving user agent can pick an appropriate agent or mechanism to
present the data to the user, or otherwise deal with the data in an appropriate manner.

HISTORICAL NOTE: The Content-Type header field was first defined in
RFC 1049. RFC 1049 Content-types used a ssimpler and less powerful
syntax, but one that is largely compatible with the mechanism given here.

The Content-Type header field is used to specify the nature of the data in the body of an
entity, by giving type and subtype identifiers, and by providing auxiliary information that
may be required for certain types. After the type and subtype names, the remainder of
the header field is ssimply a set of parameters, specified in an attribute/value notation.
The set of meaningful parameters differs for the different types. In particular, there are
NO globally-meaningful parameters that apply to all content-types. Global mechanisms
are best addressed, in the MIME model, by the definition of additional Content-* header
fields. The ordering of parametersis not significant. Among the defined parametersis a
"charset" parameter by which the character set used in the body may be declared.
Comments are allowed in accordance with RFC 822 rules for structured header fields.

In general, the top-level Content-Type is used to declare the general type of data, while
the subtype specifies a specific format for that type of data. Thus, a Content-Type of
"image/xyz" is enough to tell a user agent that the datais an image, even if the user agent
has no knowledge of the specific image format "xyz". Such information can be used, for
example, to decide whether or not to show a user the raw data from an unrecognized
subtype -- such an action might be reasonable for unrecognized subtypes of text, but not
for unrecognized subtypes of image or audio. For this reason, registered subtypes of
audio, image, text, and video, should not contain embedded information that isrealy of a
different type. Such compound types should be represented using the "multipart” or
"application" types.

Parameters are modifiers of the content-subtype, and do not fundamentally affect the
requirements of the host system. Although most parameters make sense only with
certain content-types, others are "global" in the sense that they might apply to any
subtype. For example, the "boundary" parameter makes sense only for the "multipart”
content-type, but the "charset” parameter might make sense with several content-types.

Borenstein & Freed [Page 6]

RFC 1521 MIME September 1993

An initial set of seven Content-Types is defined by this document. This set of top-level
names is intended to be substantially complete. It is expected that additions to the larger
set of supported types can generally be accomplished by the creation of new subtypes of
these initial types. In the future, more top-level types may be defined only by an
extension to this standard. If another primary type isto be used for any reason, it must be
given a name starting with "X-" to indicate its non-standard status and to avoid a
potential conflict with afuture official name.

In the Augmented BNF notation of RFC 822, a Content-Type header field value is
defined as follows:

content := "Content-Type" ":" type "/" subtype
*(";" paraneter)
case-insensitive matching of type and subtype

type : = "application” / "audio"
/ "imge" / "message”
/["multipart" /["text"
[/ "video" / extension-token

Al'l val ues case-insensitive

extension-token := x-token / iana-token
i ana-token := <a publicly-defined extension token
registered with 1 ANA, as specified in
appendi x E>
x-token := <The two characters "X-" or "x-" followed, with no

i nterveni ng white space, by any token>

subtype := token ; case-insensitive
parameter := attribute "=" val ue
attribute : = token ; case-insensitive
val ue : = token / quoted-string

token := 1*<any (ASCIl) CHAR except SPACE, CTLs, or tspecial s>

tspecials := "(" /[")" ["<" ["> | "@
[R A N
T A Y Y A
Must be in quoted-string,
to use within paraneter val ues

Note that the definition of "tspecials’ is the same as the RFC 822 definition of "specials"

with the addition of the three characters /", "?', and "=", and the removal of ".".

Note also that a subtype specification isMANDATORY. There are no default subtypes.

Borenstein & Freed [Page 7]

RFC 1521 MIME September 1993

The type, subtype, and parameter names are not case sensitive. For example, TEXT,
Text, and TeXt are all equivalent. Parameter values are normally case sensitive, but
certain parameters are interpreted to be case-insensitive, depending on the intended use.
(For example, multipart boundaries are case-sensitive, but the "access-type" for
message/External-body is not case-sensitive.)

Beyond this syntax, the only constraint on the definition of subtype names is the desire
that their uses must not conflict. That is, it would be undesirable to have two different
communities using "Content-Type: application/foobar” to mean two different things.
The process of defining new content-subtypes, then, is not intended to be a mechanism
for imposing restrictions, but simply a mechanism for publicizing the usages. There are,
therefore, two acceptable mechanisms for defining new Content-Type subtypes:

1. Private values (starting with "X-") may be defined bilaterally between
two cooperating agents without outside registration or
standardization.

2. New standard values must be documented, registered with, and
approved by IANA, as described in Appendix E. Where intended
for public use, the formats they refer to must also be defined by a
published specification, and possibly offered for standardization.

The seven standard initial predefined Content-Types are detailed in the bulk of this
document. They are:

text -- textual information. The primary subtype, "plain”, indicates plain
(unformatted) text. No specia software is required to get the full
meaning of the text, aside from support for the indicated character set.
Subtypes are to be used for enriched text in forms where application
software may enhance the appearance of the text, but such software must
not be required in order to get the general idea of the content. Possible
subtypes thus include any readable word processor format. A very simple
and portable subtype, richtext, was defined in RFC 1341, with a future
revision expected.

multipart -- data consisting of multiple parts of independent data types. Four
initial subtypes are defined, including the primary "mixed" subtype,
"aternative” for representing the same data in multiple formats, "parallel”
for parts intended to be viewed simultaneously, and "digest” for multipart
entities in which each part is of type "message”.

message -- an encapsulated message. A body of Content-Type "message” is itself
al or part of afully formatted RFC 822 conformant message which may
contain its own different Content-Type header field. The primary subtype
is "rfc822". The "partial" subtype is defined for partial messages, to
permit the fragmented transmission of bodies that are thought to be too
large to be passed through mail transport facilities. Another subtype,
"External-body", is defined for specifying large bodies by reference to an
external data source.

Borenstein & Freed [Page 8]

RFC 1521 MIME September 1993

image -- image data. Image requires a display device (such as a graphical
display, a printer, or a FAX machine) to view the information. Initial
subtypes are defined for two widely-used image formats, jpeg and gif.

audio -- audio data, with initial subtype "basic". Audio requires an audio output
device (such as a speaker or atelephone) to "display"” the contents.

video -- video data. Video requires the capability to display moving images,
typically including specialized hardware and software. The initial subtype
iIs"mpeg".

application -- some other kind of data, typically either uninterpreted binary data
or information to be processed by a mail-based application. The primary
subtype, "octet-stream”, is to be used in the case of uninterpreted binary
data, in which case the ssmplest recommended action is to offer to write
the information into a file for the user. An additional subtype,
"PostScript”, is defined for transporting PostScript documents in bodies.
Other expected uses for "application” include spreadsheets, data for mail-
based scheduling systems, and languages for "active" (computational)
email. (Note that active email and other application data may entail
severa security considerations, which are discussed later in this memo,
particularly in the context of application/PostScript.)

Default RFC 822 messages are typed by this protocol as plain text in the US-ASCII
character set, which can be explicitly specified as "Content-type: text/plain; charset=us-
ascii”. If no Content-Type is specified, this default is assumed. In the presence of a
MIME-Version header field, a receiving User Agent can also assume that plain US
ASCII text was the sender’s intent. In the absence of a MIME-Version specification,
plain US-ASCII text must till be assumed, but the sender’s intent might have been
otherwise.

RATIONALE: In the absence of any Content-Type header field or MIME-
Version header field, it is impossible to be certain that a message is
actually text in the USASCII character set, since it might well be a
message that, using the conventions that predate this document, includes
text in another character set or non-textual data in a manner that cannot
be automatically recognized (e.g., a uuencoded compressed UNIX tar file).
Although there is no fully acceptable alternative to treating such untyped
messages as "text/plain; charset=us-ascii", implementors should remain
aware that if a message lacks both the MIME-Version and the Content-
Type header fields, it may in practice contain almost anything.

It should be noted that the list of Content-Type values given here may be augmented in
time, via the mechanisms described above, and that the set of subtypes is expected to
grow substantially.

When a mail reader encounters mail with an unknown Content-type value, it should

generally treat it as equivalent to "application/octet-stream”, as described later in this
document.

Borenstein & Freed [Page 9]

RFC 1521 MIME September 1993

5 The Content-Transfer-Encoding Header Field

Many Content-Types which could usefully be transported via email are represented, in
their "natural” format, as 8-bit character or binary data. Such data cannot be transmitted
over some transport protocols. For example, RFC 821 restricts mail messages to 7-bit
US-ASCII datawith lines no longer than 1000 characters.

It is necessary, therefore, to define a standard mechanism for re-encoding such data into a
7-bit short-line format. This document specifies that such encodings will be indicated by
a new "Content-Transfer-Encoding” header field. The Content-Transfer-Encoding field
is used to indicate the type of transformation that has been used in order to represent the
body in an acceptable manner for transport.

Unlike Content-Types, a proliferation of Content-Transfer-Encoding values is
undesirable and unnecessary. However, establishing only a single Content-Transfer-
Encoding mechanism does not seem possible. There is a tradeoff between the desire for
a compact and efficient encoding of largely-binary data and the desire for a readable
encoding of data that is mostly, but not entirely, 7-bit data. For this reason, at least two
encoding mechanisms are necessary: a "readable" encoding and a "dense" encoding.

The Content-Transfer-Encoding field is designed to specify an invertible mapping
between the "native" representation of a type of data and a representation that can be
readily exchanged using 7 bit mail transport protocols, such as those defined by RFC 821
(SMTP). This field has not been defined by any previous standard. The field’'s value is a
single token specifying the type of encoding, as enumerated below. Formally:

encodi ng : = "Content-Transfer-Encoding" ":" mechani sm
nmechani sm : = "7hit" ; case-insensitive

/ "quot ed- print abl e"

/ "base64"

/["8bit"

[/ "binary"

/ x-token

These values are not case sensitive. That is, Base64 and BASE64 and bAsE64 are all
equivalent. An encoding type of 7BIT requires that the body is already in a seven-bit
mail-ready representation. This is the default value -- that is, "Content-Transfer-
Encoding: 7BIT" isassumed if the Content-Transfer-Encoding header field is not present.

The values "8hit", "7bit", and "binary" all mean that NO encoding has been performed.
However, they are potentially useful as indications of the kind of data contained in the
object, and therefore of the kind of encoding that might need to be performed for
transmission in a given transport system. In particular:

"7hit" means that the datais all represented as short lines of US-ASCII data.

Borenstein & Freed [Page 10]

RFC 1521 MIME September 1993

"8hit" means that the lines are short, but there may be non-ASCII characters
(octets with the high-order bit set).

"Binary" means that not only may non-ASCII characters be present, but also that
the lines are not necessarily short enough for SM TP transport.

The difference between "8hbit" (or any other conceivable bit-width token) and the
"binary" token is that "binary" does not require adherence to any limits on line length or
to the SMTP CRLF semantics, while the bit-width tokens do require such adherence. If
the body contains data in any bit-width other than 7-bit, the appropriate bit-width
Content-Transfer-Encoding token must be used (e.g., "8hit" for unencoded 8 bit wide
data). If the body contains binary data, the "binary" Content-Transfer-Encoding token
must be used.

NOTE: The distinction between the Content-Transfer-Encoding values of
"binary”, "8bit", etc. may seem unimportant, in that all of them really
mean "none" -- that is, there has been no encoding of the data for
transport. However, clear labeling will be of enormous value to gateways
between future mail transport systems with differing capabilities in
transporting data that do not meet the restrictions of RFC 821 transport.

Mail transport for unencoded 8-bit data is defined in RFC-1426 [RFC-
1426]. As of the publication of this document, there are no standardized
Internet mail transports for which it is legitimate to include unencoded
binary data in mail bodies. Thus there are no circumstances in which the
"binary" Content-Transfer-Encoding is actually legal on the Internet.
However, in the event that binary mail transport becomes a reality in
Internet mail, or when this document is used in conjunction with any other
binary-capable transport mechanism, binary bodies should be labeled as
such using this mechanism.

NOTE: The five values defined for the Content-Transfer-Encoding field
imply nothing about the Content-Type other than the algorithm by which it
was encoded or the transport system requirements if unencoded.

Implementors may, if necessary, define new Content-Transfer-Encoding values, but must
use an x-token, which is a name prefixed by "X-" to indicate its non-standard status, e.g.,
"Content-Transfer-Encoding: x-my-new-encoding”. However, unlike Content-Types
and subtypes, the creation of new Content-Transfer-Encoding valuesis explicitly and
strongly discouraged, as it seems likely to hinder interoperability with little potential
benefit. Their useisallowed only as the result of an agreement between cooperating user
agents.

If a Content-Transfer-Encoding header field appears as part of a message header, it
applies to the entire body of that message. If a Content-Transfer-Encoding header field
appears as part of a body part’s headers, it applies only to the body of that body part. If
an entity is of type "multipart” or "message”, the Content-Transfer-Encoding is not
permitted to have any value other than a bit width (e.g., "7bit", "8bit", etc.) or "binary".

Borenstein & Freed [Page 11]

RFC 1521 MIME September 1993

It should be noted that email is character-oriented, so that the mechanisms described here
are mechanisms for encoding arbitrary octet streams, not bit streams. If abit stream isto
be encoded via one of these mechanisms, it must first be converted to an 8-bit byte
stream using the network standard bit order ("big-endian"), in which the earlier bitsin a
stream become the higher-order bits in a byte. A bit stream not ending at an 8-bit
boundary must be padded with zeroes. This document provides a mechanism for noting
the addition of such padding in the case of the application Content-Type, which has a
"padding” parameter.

The encoding mechanisms defined here explicitly encode all data in ASCII. Thus, for
example, suppose an entity has header fields such as:

Cont ent - Type: text/plain; charset=lSO 8859-1
Cont ent -transfer-encodi ng: base64

This must be interpreted to mean that the body is a base64 ASCII encoding of data that
was originaly in 1SO-8859-1, and will bein that character set again after decoding.

The following sections will define the two standard encoding mechanisms. The
definition of new content-transfer-encodings is explicitly discouraged and should only
occur when absolutely necessary. All content-transfer-encoding namespace except that
beginning with "X-" is explicitly reserved to the IANA for future use. Private
agreements about content-transfer-encodings are also explicitly discouraged.

Certain Content-Transfer-Encoding values may only be used on certain Content-Types.
In particular, it is expressly forbidden to use any encodings other than " 7bit" , " 8bit",
or "binary" with any Content-Type that recursively includes other Content-Type
fields, notably the "multipart” and " message" Content-Types. All encodings that
are desired for bodies of type multipart or message must be done at the innermost level,
by encoding the actual body that needs to be encoded.

NOTE ON ENCODING RESTRICTIONS: Though the prohibition against
using content-transfer-encodings on data of type multipart or message may
seem overly restrictive, it is necessary to prevent nested encodings, in
which data are passed through an encoding algorithm multiple times, and
must be decoded multiple times in order to be properly viewed. Nested
encodings add considerable complexity to user agents. aside from the
obvious efficiency problems with such multiple encodings, they can
obscure the basic structure of a message. In particular, they can imply
that several decoding operations are necessary simply to find out what
types of objects a message contains. Banning nested encodings may
complicate the job of certain mail gateways, but this seems less of a
problem than the effect of nested encodings on user agents.

NOTE ON THE RELATIONSHIP BETWEEN CONTENT-TYPE AND

CONTENT-TRANSFER-ENCODING: It may seem that the Content-
Transfer-Encoding could be inferred from the characteristics of the

Borenstein & Freed [Page 12]

RFC 1521 MIME September 1993

Content-Type that is to be encoded, or, at the very least, that certain
Content-Transfer-Encodings could be mandated for use with specific
Content-Types. There are several reasons why this is not the case. First,
given the varying types of transports used for mail, some encodings may be
appropriate for some Content-Type/transport combinations and not for
others. (For example, in an 8-bit transport, no encoding would be
required for text in certain character sets, while such encodings are
clearly required for 7-bit SMTP.)

Second, certain Content-Types may require different types of transfer
encoding under different circumstances. For example, many PostScript
bodies might consist entirely of short lines of 7-bit data and hence require
little or no encoding. Other PostScript bodies (especially those using Level
2 PostScript’s binary encoding mechanism) may only be reasonably
represented using a binary transport encoding. Finally, since Content-
Type is intended to be an open-ended specification mechanism, strict
gpecification of an association between Content-Types and encodings
effectively couples the specification of an application protocol with a
specific lower-level transport. Thisis not desirable since the developers of
a Content-Type should not have to be aware of all the transports in use
and what their limitations are.

NOTE ON TRANSLATING ENCODINGS The quoted-printable and
base64 encodings are designed so that conversion between them is
possible. The only issue that arises in such a conversion is the handling of
line breaks. When converting from quoted-printable to base64 a line break
must be converted into a CRLF sequence. Smilarly, a CRLF sequence in
base64 data must be converted to a quoted-printable line break, but ONLY
when converting text data.

NOTE ON CANONICAL ENCODING MODEL: There was some
confusion, in earlier drafts of this memo, regarding the model for when
email data was to be converted to canonical form and encoded, and in
particular how this process would affect the treatment of CRLFs, given
that the representation of newlines varies greatly from system to system,
and the relationship between content-transfer-encodings and character
sets. For this reason, a canonical model for encoding is presented as
Appendix G.

Borenstein & Freed [Page 13]

RFC 1521 MIME September 1993

51 Quoted-Printable Content-Transfer-Encoding

The Quoted-Printable encoding is intended to represent data that largely consists of
octets that correspond to printable characters in the ASCII character set. It encodes the
data in such a way that the resulting octets are unlikely to be modified by mail transport.
If the data being encoded are mostly ASCII text, the encoded form of the data remains
largely recognizable by humans. A body which is entirely ASCII may also be encoded in
Quoted-Printable to ensure the integrity of the data should the message pass through a
character-trandlating, and/or line-wrapping gateway.

In this encoding, octets are to be represented as determined by the following rules:

Rule #1. (General 8-bit representation) Any octet, except those indicating a line
break according to the newline convention of the canonical (standard) form of the
data being encoded, may be represented by an "=" followed by a two digit
hexadecimal representation of the octet’s value. The digits of the hexadecimal
alphabet, for this purpose, are "0123456789ABCDEF". Uppercase letters must be
used when sending hexadecima data, though a robust implementation may
choose to recognize lowercase letters on receipt. Thus, for example, the value 12
(ASCIl form feed) can be represented by "=0C", and the value 61 (ASCII
EQUAL SIGN) can be represented by "=3D". Except when the following rules
allow an alternative encoding, thisrule is mandatory.

Rule #2: (Literal representation) Octets with decimal values of 33 through 60
inclusive, and 62 through 126, inclusive, MAY be represented as the ASCII
characters which correspond to those octets (EXCLAMATION POINT through
LESS THAN, and GREATER THAN through TILDE, respectively).

Rule #3: (White Space): Octets with values of 9 and 32 MAY be represented as
ASCIlI TAB (HT) and SPACE characters, respectively, but MUST NOT be so
represented at the end of an encoded line. Any TAB (HT) or SPACE characters
on an encoded line MUST thus be followed on that line by a printable character.
In particular, an "=" at the end of an encoded line, indicating a soft line break (see
rule #5) may follow one or more TAB (HT) or SPACE characters. It follows that
an octet with value 9 or 32 appearing at the end of an encoded line must be
represented according to Rule #1. This rule is necessary because some MTAS
(Message Transport Agents, programs which transport messages from one user to
another, or perform a part of such transfers) are known to pad lines of text with
SPACEs, and others are known to remove "white space” characters from the end
of a line. Therefore, when decoding a Quoted-Printable body, any trailing
white space on a line must be deleted, as it will necessarily have been added by
intermediate transport agents.

Rule #4 (Line Breaks): A line break in a text body, independent of what its
representation is following the canonical representation of the data being
encoded, must be represented by a (RFC 822) line break, which is a CRLF
sequence, in the Quoted-Printable encoding. Since the canonical representation

Borenstein & Freed [Page 14]

RFC 1521 MIME September 1993

of types other than text do not generally include the representation of line breaks,
no hard line breaks (i.e. line breaks that are intended to be meaningful and to be
displayed to the user) should occur in the quoted-printable encoding of such
types. Of course, occurrences of "=0D", "=0A", "=0A=0D" and "=0D=0A" will
eventually be encountered. In general, however, base64 is preferred over
guoted-printable for binary data.

Note that many implementations may elect to encode the local representation of
various content types directly, as described in Appendix G. In particular, this may
apply to plain text material on systems that use newline conventions other than
CRLF delimiters. Such an implementation is permissible, but the generation of
line breaks must be generalized to account for the case where alternate
representations of newline sequences are used.

Rule #5 (Soft Line Breaks): The Quoted-Printable encoding REQUIRES that
encoded lines be no more than 76 characters long. If longer lines are to be
encoded with the Quoted-Printable encoding, ’soft’ line breaks must be used. An
egual sign as the last character on a encoded line indicates such a non-significant
('soft’) line break in the encoded text. Thus if the "raw" form of the line is a
single unencoded line that says:

Now s the tinme for all folk to conme to the aid of their
country.

This can be represented, in the Quoted-Printable encoding, as

Now s the tine =
for all folk to cone=
to the aid of their country.

This provides a mechanism with which long lines are encoded in such away asto
be restored by the user agent. The 76 character limit does not count the trailing
CRLF, but counts all other characters, including any equal signs.

Since the hyphen character ("-") is represented as itself in the Quoted-Printable encoding,
care must be taken, when encapsulating a quoted-printable encoded body in a multipart
entity, to ensure that the encapsulation boundary does not appear anywhere in the
encoded body. (A good strategy is to choose a boundary that includes a character

sequence such as "= " which can never appear in a quoted-printable body. See the
definition of multipart messages later in this document.)

NOTE: The quoted-printable encoding represents something of a
compromise between readability and reliability in transport. Bodies
encoded with the quoted-printable encoding will work reliably over most
mail gateways, but may not work perfectly over a few gateways, notably
those involving trandation into EBCDIC. (In theory, an EBCDIC gateway
could decode a quoted-printable body and re-encode it using base64, but
such gateways do not yet exist.) A higher level of confidence is offered by

Borenstein & Freed [Page 15]

RFC 1521 MIME September 1993

the base64 Content-Transfer-Encoding. A way to get reasonably reliable
transport through EBCDIC gateways is to also quote the ASCII characters

ras@\] " {1}
according to rule#1. See Appendix B for more information.

Because quoted-printable data is generally assumed to be line-oriented, it is to be
expected that the representation of the breaks between the lines of quoted printable data
may be altered in transport, in the same manner that plain text mail has always been
altered in Internet mail when passing between systems with differing newline
conventions. |If such alterations are likely to constitute a corruption of the data, it is
probably more sensible to use the base64 encoding rather than the quoted-printable
encoding.

WARNING TO IMPLEMENTORS: If binary data are encoded in quoted-printable, care
must be taken to encode CR and LF characters as "=0D" and "=0A", respectively. In
particular, a CRLF sequence in binary data should be encoded as "=0D=0A". Otherwise,
if CRLF were represented as a hard line break, it might be incorrectly decoded on
platforms with different line break conventions.

For formalists, the syntax of quoted-printable data is described by the following
grammar:

gquoted-printable := ([*(ptext / SPACE / TAB) ptext] ["="] CRLF)
Maxi mum i ne | ength of 76 characters excluding CRLF

ptext := octet / <any ASCI| character except "=", SPACE, or TAB>
characters not listed as "nail-safe" in Appendix B
are al so not recomended.

octet := "=" 2(D@T/ "A"/ "B*"/ "C" /] "D/ "E'" [/ "F")
octet must be used for characters > 127, =, SPACE, or TAB,
and is recomended for any characters not listed in
; Appendix B as "nmmil-safe".

Borenstein & Freed [Page 16]

RFC 1521 MIME September 1993

52 Baset4 Content-Transfer-Encoding

The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of
octets in a form that need not be humanly readable. The encoding and decoding
algorithms are simple, but the encoded data are consistently only about 33 percent larger
than the unencoded data. This encoding is virtually identical to the one used in Privacy
Enhanced Mail (PEM) applications, as defined in RFC 1421. The base64 encoding is
adapted from RFC 1421, with one change: base64 eliminates the "*" mechanism for
embedded clear text.

A 65-character subset of US-ASCII is used, enabling 6 bits to be represented per
printable character. (The extra 65th character, "=", is used to signify a special processing
function.)

NOTE: This subset has the important property that it is represented
identically in all versions of 1SO 646, including US ASCII, and all
characters in the subset are also represented identically in all versions of
EBCDIC. Other popular encodings, such as the encoding used by the
uuencode utility and the base85 encoding specified as part of Level 2
PostScript, do not share these properties, and thus do not fulfill the
portability requirements a binary transport encoding for mail must meet.

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded
characters. Proceeding from left to right, a 24-bit input group is formed by concatenating
3 8-hit input groups. These 24 hits are then treated as 4 concatenated 6-bit groups, each
of which is trandated into a single digit in the base64 alphabet. When encoding a bit
stream via the base64 encoding, the bit stream must be presumed to be ordered with the
most-significant-bit first. That is, the first bit in the stream will be the high-order bit in
the first byte, and the eighth bit will be the low-order bit in the first byte, and so on.

Each 6-bit group is used as an index into an array of 64 printable characters. The
character referenced by the index is placed in the output string. These characters,
identified in Table 1, below, are selected so as to be universally representable, and the set
excludes characters with particular significance to SMTP (e.g., ".", CR, LF) and to the
encapsulation boundaries defined in this document (e.g., "-").

Borenstein & Freed [Page 17]

RFC 1521 MIME September 1993

Table 1: The Base64 Alphabet

Val ue Encodi ng Value Encoding Value Encoding Value Encodi ng

0 A 17 R 34 i 51 z
1B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3D 20 U 37 | 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 T 60 8
10 K 27 b 44 s 61 9
11 L 28 ¢ 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v

14 O 31 f 48 w (pad) =
15 P 32 g 49 x

16 Q 33 h 50 y

The output stream (encoded bytes) must be represented in lines of no more than 76
characters each. All line breaks or other characters not found in Table 1 must be ignored
by decoding software. In base64 data, characters other than those in Table 1, line breaks,
and other white space probably indicate a transmission error, about which a warning
message or even a message rejection might be appropriate under some circumstances.

Specia processing is performed if fewer than 24 bits are available at the end of the data
being encoded. A full encoding quantum is always completed at the end of a body.
When fewer than 24 input bits are available in an input group, zero bits are added (on the
right) to form an integral number of 6-bit groups. Padding at the end of the data is
performed using the "= character. Since all base64 input is an integral number of
octets, only the following cases can arise: (1) the final quantum of encoding input is an
integral multiple of 24 bits; here, the final unit of encoded output will be an integral
multiple of 4 characters with no "=" padding, (2) the final quantum of encoding input is
exactly 8 bits; here, the final unit of encoded output will be two characters followed by
two "=" padding characters, or (3) the final quantum of encoding input is exactly 16 bits;
here, the final unit of encoded output will be three characters followed by one "="
padding character.

Because it is used only for padding at the end of the data, the occurrence of any "=’
characters may be taken as evidence that the end of the data has been reached (without
truncation in transit). No such assurance is possible, however, when the number of octets
transmitted was a multiple of three.

Any characters outside of the base64 aphabet are to be ignored in base64-encoded data.
The same applies to any illegal sequence of characters in the base64 encoding, such as

Borenstein & Freed [Page 18]

RFC 1521 MIME September 1993

Care must be taken to use the proper octets for line breaks if base64 encoding is applied
directly to text material that has not been converted to canonical form. In particular, text
line breaks must be converted into CRLF sequences prior to base64 encoding. The
important thing to note is that this may be done directly by the encoder rather than in a
prior canonicalization step in some implementations.

NOTE: There is no need to worry about quoting apparent encapsulation
boundaries within base64-encoded parts of multipart entities because no
hyphen characters are used in the base64 encoding.

6 Additional Content- Header Fields

6.1 Optional Content-ID Header Field

In constructing a high-level user agent, it may be desirable to allow one body to make
reference to another. Accordingly, bodies may be labeled using the "Content-ID" header
field, which is syntactically identical to the "Message-ID" header field:

id := "Content-1D" ":" nsg-id
Like the Message-1D values, Content-1D values must be generated to be world-unique.

The Content-ID value may be used for uniquely identifying MIME entities in several
contexts, particularly for cacheing data referenced by the message/external-body
mechanism. Although the Content-1D header is generally optional, its use is mandatory
in implementations which generate data of the optiona MIME Content-type
"message/external-body”. That is, each message/external-body entity must have a
Content-1D field to permit cacheing of such data.

It is also worth noting that the Content-ID value has special semantics in the case of the
multipart/alternative content-type. This is explained in the section of this document
dealing with multipart/alternative.

6.2 Optional Content-Description Header Field

The ability to associate some descriptive information with a given body is often
desirable. For example, it may be useful to mark an "image" body as "a picture of the
Space Shuttle Endeavor.” Such text may be placed in the Content-Description header
field.

description := "Content-Description" ":" *text

The description is presumed to be given in the US-ASCII character set, athough the

mechanism specified in [RFC-1522] may be used for non-US-ASCII Content-Description
values.

Borenstein & Freed [Page 19]

RFC 1521 MIME September 1993

7 The Predefined Content-Type Values

This document defines seven initial Content-Type values and an extension mechanism
for private or experimental types. Further standard types must be defined by new
published specifications. It is expected that most innovation in new types of mail will
take place as subtypes of the seven types defined here. The most essential characteristics
of the seven content-types are summarized in Appendix F.

7.1 TheText Content-Type

The text Content-Type is intended for sending material which is principally textual in
form. It isthe default Content-Type. A "charset” parameter may be used to indicate the
character set of the body text for some text subtypes, notably including the primary
subtype, "text/plain”, which indicates plain (unformatted) text. The default Content-
Typefor Internet mail is" text/plain; charset=us-ascii" .

Beyond plain text, there are many formats for representing what might be known as
"extended text" -- text with embedded formatting and presentation information. An
interesting characteristic of many such representations is that they are to some extent
readable even without the software that interprets them. It is useful, then, to distinguish
them, at the highest level, from such unreadable data as images, audio, or text
represented in an unreadable form. In the absence of appropriate interpretation software,
it is reasonable to show subtypes of text to the user, while it is not reasonable to do so
with most nontextual data.

Such formatted textual data should be represented using subtypes of text. Plausible
subtypes of text are typically given by the common name of the representation format,
e.g., "text/richtext” [RFC-1341].

7.1.1 Thecharset parameter

A critical parameter that may be specified in the Content-Type field for text/plain datais
the character set. Thisis specified with a"charset” parameter, asin:

Content-type: text/plain; charset=us-ascii

Unlike some other parameter values, the values of the charset parameter are NOT case
sensitive. The default character set, which must be assumed in the absence of a charset
parameter, is US-ASCII.

The specification for any future subtypes of "text" must specify whether or not they will
also utilize a"charset" parameter, and may possibly restrict its values as well. When used
with a particular body, the semantics of the "charset" parameter should be identical to
those specified here for "text/plain”, i.e., the body consists entirely of characters in the
given charset. In particular, definers of future text subtypes should pay close attention
the the implications of multibyte character sets for their subtype definitions.

Borenstein & Freed [Page 20]

RFC 1521 MIME September 1993

This RFC specifies the definition of the charset parameter for the purposes of MIME to
be a unique mapping of a byte stream to glyphs, a mapping which does not require
external profiling information.

An initial list of predefined character set names can be found at the end of this section.
Additional character sets may be registered with IANA, athough the standardization of
their use requires the usual IAB review and approval. Note that if the specified character
set includes 8-bit data, a Content-Transfer-Encoding header field and a corresponding
encoding on the data are required in order to transmit the body via some mail transfer
protocols, such as SMTP.

The default character set, US-ASCII, has been the subject of some confusion and
ambiguity in the past. Not only were there some ambiguities in the definition, there have
been wide variations in practice. In order to eliminate such ambiguity and variations in
the future, it is strongly recommended that new user agents explicitly specify a character
set via the Content-Type header field. "US-ASCII" does not indicate an arbitrary seven-
bit character code, but specifies that the body uses character coding that uses the exact
correspondence of codes to characters specified in ASCII. National use variations of 1SO
646 [1SO-646] are NOT ASCII and their use in Internet mail is explicitly discouraged.
The omission of the ISO 646 character set is deliberate in this regard. The character set
name of "USASCII" explicitly refers to ANSI X3.4-1986 [US-ASCII] only. The
character set name" ASCII" isreserved and must not be used for any purpose.

NOTE: RFC 821 explicitly specifies "ASCII", and references an earlier
version of the American Sandard. Insofar as one of the purposes of
specifying a Content-Type and character set is to permit the receiver to
unambiguously determine how the sender intended the coded message to
be interpreted, assuming anything other than "strict ASCII" as the default
would risk unintentional and incompatible changes to the semantics of
messages now being transmitted. This also implies that messages
containing characters coded according to national variations on 1SO 646,
or using code-switching procedures (e.g., those of 1SO 2022), as well as
8-bit or multiple octet character encodings MUST use an appropriate
character set specification to be consistent with this specification.

The complete US-ASCII character set is listed in [US-ASCII]. Note that the control
characters including DEL (0-31, 127) have no defined meaning apart from the
combination CRLF (ASCII values 13 and 10) indicating a new line. Two of the
characters have de facto meanings in wide use: FF (12) often means "start subsequent
text on the beginning of a new page"; and TAB or HT (9) often (though not aways)
means "move the cursor to the next available column after the current position where the
column number is a multiple of 8 (counting the first column as column 0)." Apart from
this, any use of the control characters or DEL in a body must be part of a private
agreement between the sender and recipient. Such private agreements are discouraged
and should be replaced by the other capabilities of this document.

Borenstein & Freed [Page 21]

RFC 1521 MIME September 1993

NOTE: Beyond USASCII, an enormous proliferation of character setsis
possible. It isthe opinion of the IETF working group that a large number
of character setsis NOT a good thing. We would prefer to specify a single
character set that can be used universally for representing all of the
world’s languages in electronic mail. Unfortunately, existing practice in
several communities seems to point to the continued use of multiple
character sets in the near future. For this reason, we define names for a
small number of character sets for which a strong constituent base exists.

The defined charset values are:
US-ASCII -- asdefined in [US-ASCII].

|SO-8859-X -- where "X" is to be replaced, as necessary, for the parts of
1SO-8859 [ISO-8859]. Note that the 1ISO 646 character sets have
deliberately been omitted in favor of their 8859 replacements,
which are the designated character sets for Internet mail. As of the
publication of this document, the legitimate values for "X" are the
digits 1 through 9.

The character sets specified above are the ones that were relatively uncontroversia
during the drafting of MIME. This document does not endorse the use of any particular
character set other than US-ASCII, and recognizes that the future evolution of world
character sets remains unclear. It is expected that in the future, additional character sets
will be registered for usein MIME.

Note that the character set used, if anything other than US-ASCII, must aways be
explicitly specified in the Content-Type field.

No other character set name may be used in Internet mail without the publication of a
formal specification and its registration with IANA, or by private agreement, in which
case the character set name must begin with "X-".

Implementors are discouraged from defining new character sets for mail use unless
absolutely necessary.

The "charset” parameter has been defined primarily for the purpose of textual data, and is
described in this section for that reason. However, it is conceivable that non-textual data
might also wish to specify a charset value for some purpose, in which case the same
syntax and values should be used.

In general, mail-sending software must always use the "lowest common denominator"
character set possible. For example, if a body contains only US-ASCII characters, it
must be marked as being in the US-ASCII character set, not 1SO-8859-1, which, like all
the 1SO-8859 family of character sets, is a superset of US-ASCII. More generaly, if a
widely-used character set is a subset of another character set, and a body contains only
characters in the widely-used subset, it must be labeled as being in that subset. This will

Borenstein & Freed [Page 22]

RFC 1521 MIME September 1993

increase the chances that the recipient will be able to view the mail correctly.

7.1.2 The Text/plain subtype

The primary subtype of text is "plain". This indicates plain (unformatted) text. The
default Content-Type for Internet mail, "text/plain; charset=us-ascii", describes existing
Internet practice. That is, it isthe type of body defined by RFC 822.

No other text subtype is defined by this document.

The formal grammar for the content-type header field for text is as follows:

text-type := "text" "/" text-subtype [";" "charset" "=" charset]
text-subtype := "plain" / extension-token
charset := "us-ascii" / "iso-8859-1" / "iso0-8859-2" / "iso-8859-3"

/| "iso-8859-4" / "iso-8859-5" / "iso-8859-6" / "iso-8859-7"
/ "iso-8859-8" / "iso0-8859-9" / extension-token
; case insensitive

7.2 TheMultipart Content-Type

In the case of multiple part entities, in which one or more different sets of data are
combined in a single body, a "multipart” Content-Type field must appear in the entity’s
header. The body must then contain one or more "body parts,” each preceded by an
encapsulation boundary, and the last one followed by a closing boundary. Each part
starts with an encapsulation boundary, and then contains a body part consisting of header
area, ablank line, and abody area. Thusabody part is similar to an RFC 822 message in
syntax, but different in meaning.

A body part is NOT to be interpreted as actually being an RFC 822 message. To begin
with, NO header fields are actually required in body parts. A body part that starts with a
blank line, therefore, is allowed and is a body part for which al default values are to be
assumed. In such a case, the absence of a Content-Type header field implies that the
corresponding body is plain US-ASCII text. The only header fields that have defined
meaning for body parts are those the names of which begin with "Content-". All other
header fields are generally to be ignored in body parts. Although they should generally
be retained in mail processing, they may be discarded by gateways if necessary. Such
other fields are permitted to appear in body parts but must not be depended on. "X-"
fields may be created for experimental or private purposes, with the recognition that the
information they contain may be lost at some gateways.

NOTE: The distinction between an RFC 822 message and a body part is
subtle, but important. A gateway between Internet and X.400 mail, for
example, must be able to tell the difference between a body part that
contains an image and a body part that contains an encapsulated message,
the body of which is an image. In order to represent the latter, the body

Borenstein & Freed [Page 23]

RFC 1521 MIME September 1993

part must have "Content-Type: message”, and its body (after the blank
line) must be the encapsulated message, with its own "Content-Type:
image" header field. The use of similar syntax facilitates the conversion of
messages to body parts, and vice versa, but the distinction between the two
must be understood by implementors. (For the special case in which all
parts actually are messages, a "digest” subtype is also defined.)

As stated previously, each body part is preceded by an encapsulation boundary. The
encapsulation boundary MUST NOT appear inside any of the encapsulated parts. Thus,
it is crucia that the composing agent be able to choose and specify the unique boundary
that will separate the parts.

All present and future subtypes of the "multipart” type must use an identical syntax.
Subtypes may differ in their semantics, and may impose additional restrictions on syntax,
but must conform to the required syntax for the multipart type. This requirement ensures
that all conformant user agents will at least be able to recognize and separate the parts of
any multipart entity, even of an unrecognized subtype.

As stated in the definition of the Content-Transfer-Encoding field, no encoding other than
"7hit", "8bit", or "binary" is permitted for entities of type "multipart”. The multipart
delimiters and header fields are always represented as 7-bit ASCII in any case (though
the header fields may encode non-ASCII header text as per [RFC-1522]), and data within
the body parts can be encoded on a part-by-part basis, with Content-Transfer-Encoding
fields for each appropriate body part.

Mail gateways, relays, and other mail handling agents are commonly known to alter the
top-level header of an RFC 822 message. In particular, they frequently add, remove, or
reorder header fields. Such aterations are explicitly forbidden for the body part headers
embedded in the bodies of messages of type "multipart.”

7.2.1 Multipart: The common syntax

All subtypes of "multipart" share a common syntax, defined in this section. A simple
example of a multipart message also appears in this section. An example of a more
complex multipart message is given in Appendix C.

The Content-Type field for multipart entities requires one parameter, "boundary”, which
is used to specify the encapsulation boundary. The encapsulation boundary is defined as
aline consisting entirely of two hyphen characters ("-", decimal code 45) followed by the
boundary parameter value from the Content-Type header field.

NOTE: The hyphens are for rough compatibility with the earlier RFC 934
method of message encapsulation, and for ease of searching for the
boundaries in some implementations. However, it should be noted that
multipart messages are NOT completely compatible with RFC 934
encapsulations; in particular, they do not obey RFC 934 quoting
conventions for embedded lines that begin with hyphens. This mechanism

Borenstein & Freed [Page 24]

RFC 1521 MIME September 1993

was chosen over the RFC 934 mechanism because the latter causes lines to
grow with each level of quoting. The combination of this growth with the
fact that SVITP implementations sometimes wrap long lines made the RFC
934 mechanism unsuitable for use in the event that deeply-nested multipart
structuring is ever desired.

WARNING TO IMPLEMENTORS: The grammar for parameters on the Content-type
field is such that it is often necessary to enclose the boundaries in quotes on the Content-
type line. Thisisnot always necessary, but never hurts. Implementors should be sure to
study the grammar carefully in order to avoid producing illegal Content-type fields.
Thus, atypical multipart Content-Type header field might look like this:

Cont ent - Type: mul ti part/ m xed;
boundar y=gc0p4JqOM2Yt 08] U534c0p

But the following isillegal:

Content - Type: nul ti part/ m xed;
boundar y=gc0p4JqOM 2Yt 08j U534cOp

(because of the colon) and must instead be represented as

Content - Type: nmul ti part/ m xed;
boundar y="gcOp4JgOM 2Yt 08j U534c0p"

This indicates that the entity consists of several parts, each itself with a structure that is
syntactically identical to an RFC 822 message, except that the header area might be
completely empty, and that the parts are each preceded by the line

--gc0p4JgOM 2Yt 08j Us534c0p

Note that the encapsulation boundary must occur at the beginning of a line, i.e,
following a CRLF, and that the initial CRLF is considered to be attached to the
encapsulation boundary rather than part of the preceding part. The boundary must be
followed immediately either by another CRLF and the header fields for the next part, or
by two CRLFs, in which case there are no header fields for the next part (and it is
therefore assumed to be of Content-Type text/plain).

NOTE: The CRLF preceding the encapsulation line is conceptually
attached to the boundary so that it is possible to have a part that does not
end with a CRLF (line break). Body parts that must be considered to end
with line breaks, therefore, must have two CRLFs preceding the
encapsulation line, the first of which is part of the preceding body part,
and the second of which is part of the encapsulation boundary.

Encapsulation boundaries must not appear within the encapsulations, and must be no
longer than 70 characters, not counting the two leading hyphens.

Borenstein & Freed [Page 25]

RFC 1521 MIME September 1993

The encapsulation boundary following the last body part is a distinguished delimiter that
indicates that no further body parts will follow. Such a delimiter is identical to the
previous delimiters, with the addition of two more hyphens at the end of the line:

--gc0p4JgOM2Yt 08j U534c0p- -

There appears to be room for additional information prior to the first encapsulation
boundary and following the final boundary. These areas should generally be left blank,
and implementations must ignore anything that appears before the first boundary or after
the last one.

NOTE: These "preamble’ and "epilogue" areas are generally not used
because of the lack of proper typing of these parts and the lack of clear
semantics for handling these areas at gateways, particularly X.400
gateways. However, rather than leaving the preamble area blank, many
MIME implementations have found this to be a convenient place to insert
an explanatory note for recipients who read the message with pre-MIME
software, since such notes will be ignored by MIME-compliant software.

NOTE: Because encapsulation boundaries must not appear in the body
parts being encapsulated, a user agent must exercise care to choose a
unique boundary. The boundary in the example above could have been the
result of an algorithm designed to produce boundaries with a very low
probability of already existing in the data to be encapsulated without
having to prescan the data. Alternate algorithms might result in more
'readable’ boundaries for a recipient with an old user agent, but would
require more attention to the possibility that the boundary might appear in
the encapsulated part. The simplest boundary possible is something like

"---" with a closing boundary of "----- .

As a very simple example, the following multipart message has two parts, both of them
plain text, one of them explicitly typed and one of them implicitly typed:

From Nat hani el Borenstein <nsb@ell core. conp
To: Ned Freed <ned@ nnosoft. conp
Subj ect: Sanpl e nessage
M ME- Version: 1.0
Content-type: nmultipart/m xed,;
boundar y="si npl e boundary"

This is the preanble. It is to be ignored, though it
is a handy place for mail conposers to include an
expl anatory note to non-M ME conf ornmant readers.
--sinmpl e boundary

This is inplicitly typed plain ASCI|l text.

Borenstein & Freed [Page 26]

RFC 1521 MIME September 1993

It does NOT end with a |inebreak.
--sinpl e boundary
Content-type: text/plain; charset=us-asci

This is explicitly typed plain ASCI1 text.
It DOES end with a |inebreak

--sinpl e boundary- -
This is the epilogue. It is also to be ignored.

The use of a Content-Type of multipart in a body part within another multipart entity is
explicitly allowed. In such cases, for obvious reasons, care must be taken to ensure that
each nested multipart entity must use a different boundary delimiter. See Appendix C for
an example of nested multipart entities.

The use of the multipart Content-Type with only a single body part may be useful in
certain contexts, and is explicitly permitted.

The only mandatory parameter for the multipart Content-Type is the boundary
parameter, which consists of 1 to 70 characters from a set of characters known to be very
robust through email gateways, and NOT ending with white space. (If a boundary
appears to end with white space, the white space must be presumed to have been added
by a gateway, and must be deleted.) It isformally specified by the following BNF:

boundary : = 0*69<bchar s> bchar snospace

bchars : = bcharsnospace /

bcharsnospace := DIAT / ALPHA / """ ["(" [")" ["+" [" |
I Y A B e B B A

Overall, the body of a multipart entity may be specified as follows:

nmul tipart-body : = preanbl e 1*encapsul ation
cl ose-delimter epilogue

encapsul ation := delinmter body-part CRLF

delimter :="--" boundary CRLF ; taken from Content-Type field.
; There must be no space
; between "--" and boundary.
close-delimter := "--" boundary "--" CRLF

; Again, no space by "--",

preanbl e : = di scard-text ; to be ignored upon receipt.
epi | ogue : = di scard-text ; to be ignored upon receipt.

di scard-text := *(*text CRLF)

Borenstein & Freed [Page 27]

RFC 1521 MIME September 1993

body-part := <"nessage" as defined in RFC 822,
with all header fields optional, and with the
specified delinmter not occurring anywhere in
t he nmessage body, either on a line by itself
or as a substring anywhere. Note that the
semantics of a part differ fromthe semantics
of a message, as described in the text.>

NOTE: In certain transport enclaves, RFC 822 restrictions such as
the one that limts bodies to printable ASCI|I characters nay not
be in force. (That is, the transport domains may resenble
standard Internet mail transport as specified in RFC821 and
assuned by RFC822, but wthout <certain restrictions.) The
rel axation of these restrictions should be construed as locally
extending the definition of bodies, for exanple to include octets
outside of the ASCIlI range, as long as these extensions are
supported by the transport and adequately docunented in the
Cont ent - Tr ansf er - Encodi ng header field. However, in no event are
headers (either nmessage headers or body-part headers) allowed to
contai n anything other than ASCI| characters.

NOTE: Conspicuousy missing from the multipart type is a notion of
structured, related body parts. In general, it seems premature to try to
standardize interpart structure yet. It is recommended that those wishing
to provide a more structured or integrated multipart messaging facility
should define a subtype of multipart that is syntactically identical, but that
always expects the inclusion of a distinguished part that can be used to
specify the structure and integration of the other parts, probably referring
to them by their Content-ID field. If this approach is used, other
implementations will not recognize the new subtype, but will treat it as the
primary subtype (multipart/mixed) and will thus be able to show the user
the parts that are recognized.

7.2.2 The Multipart/mixed (primary) subtype

The primary subtype for multipart, "mixed", is intended for use when the body parts are
independent and need to be bundled in a particular order. Any multipart subtypes that an
implementation does not recognize must be treated as being of subtype "mixed".

7.2.3 The Multipart/alternative subtype

The multipart/alternative type is syntactically identical to multipart/mixed, but the
semantics are different. In particular, each of the parts is an "aternative" version of the
same information.

Systems should recognize that the content of the various parts are interchangeable.
Systems should choose the "best" type based on the local environment and preferences,
in some cases even through user interaction. As with multipart/mixed, the order of body
parts is significant. In this case, the alternatives appear in an order of increasing
faithfulness to the original content. In general, the best choice isthe LAST part of a type

Borenstein & Freed [Page 28]

RFC 1521 MIME September 1993

supported by the recipient system’s local environment.

Multipart/alternative may be used, for example, to send mail in a fancy text format in
such away that it can easily be displayed anywhere:

From Nat hani el Borenstein <nsb@ell core.conp

To: Ned Freed <ned@ nnosoft.conp

Subj ect: Fornatted text mai

M ME-Version: 1.0

Content-Type: nultipart/alternative; boundary=boundary42

- - boundary42
Cont ent - Type: text/plain; charset=us-asci

...plain text version of nessage goes here...

- - boundary42
Cont ent - Type: text/richtext

RFC 1341 richtext version of sane nessage goes here ..

- - boundary42
Cont ent - Type: text/x-whatever

fanci est version of sane nessage goes here ..

- - boundar y42- -

In this example, users whose mail system understood the "text/x-whatever" format would
see only the fancy version, while other users would see only the richtext or plain text
version, depending on the capabilities of their system.

In general, user agents that compose multipart/alternative entities must place the body
parts in increasing order of preference, that is, with the preferred format last. For fancy
text, the sending user agent should put the plainest format first and the richest format |ast.
Receiving user agents should pick and display the last format they are capable of
displaying. In the case where one of the alternatives is itself of type "multipart” and
contains unrecognized sub-parts, the user agent may choose either to show that
aternative, an earlier aternative, or both.

NOTE: From an implementor’s perspective, it might seem more sensible
to reverse this ordering, and have the plainest alternative last. However,
placing the plainest alternative first is the friendliest possible option when
multipart/alternative entities are viewed using a non-MIME-conformant
mail reader. While this approach does impose some burden on conformant
mail readers, interoperability with older mail readers was deemed to be
more important in this case.

Borenstein & Freed [Page 29]

RFC 1521 MIME September 1993

It may be the case that some user agents, if they can recognize more than one of the
formats, will prefer to offer the user the choice of which format to view. This makes
sense, for example, if mail includes both a nicely-formatted image version and an easily-
edited text version. What is most critical, however, is that the user not automatically be
shown multiple versions of the same data. Either the user should be shown the last
recognized version or should be given the choice.

NOTE ON THE SEMANTICS OF CONTENT-ID IN MULTIPART/ALTERNATIVE:
Each part of a multipart/alternative entity represents the same data, but the mappings
between the two are not necessarily without information loss. For example, information
is lost when trandating ODA to PostScript or plain text. It is recommended that each
part should have a different Content-ID value in the case where the information content
of the two parts is not identical. However, where the information content is identical --
for example, where several parts of type "application/external-body" specify alternate
ways to access the identical data -- the same Content-1D field value should be used, to
optimize any cacheing mechanisms that might be present on the recipient's end.
However, it is recommended that the Content-ID values used by the parts should not be
the same Content-1D value that describes the multipart/alternative as a whole, if there is
any such Content-ID field. That is, one Content-ID vaue will refer to the
multipart/alternative entity, while one or more other Content-1D values will refer to the
partsinsideit.

7.2.4 The Multipart/digest subtype

This document defines a "digest” subtype of the multipart Content-Type. This type is
syntactically identical to multipart/mixed, but the semantics are different. In particular,
in adigest, the default Content-Type value for a body part is changed from "text/plain” to
"message/rfc822". This is done to alow a more readable digest format that is largely
compatible (except for the quoting convention) with RFC 934.

A digest in this format might, then, look something like this:

From Moder at or - Addr ess

To: Reci pi ent-Li st

M ME-Version: 1.0

Subject: Internet Digest, volune 42

Content - Type: nmul tipart/digest;
boundary="---- next nessage ----"

------ next nessage ----

From soneone-el se
Subj ect: ny opinion

... body goes here ...

Borenstein & Freed [Page 30]

RFC 1521 MIME September 1993

------ next nessage ----

From soneone-el se-again
Subject: ny different opinion

anot her body goes here. ..

------ next nmessage ------

7.25 The Multipart/parallel subtype

This document defines a "parallel” subtype of the multipart Content-Type. This type is
syntactically identical to multipart/mixed, but the semantics are different. In particular,
in a parallel entity, the order of body partsis not significant.

A common presentation of this type is to display al of the parts simultaneously on
hardware and software that are capable of doing so. However, composing agents
should be aware that many mail readers will lack this capability and will show the parts
serially in any event.

7.2.6 Other Multipart subtypes
Other multipart subtypes are expected in the future. MIME implementations must in
general treat unrecognized subtypes of multipart as being equivaent to

"multipart/mixed”.

The formal grammar for content-type header fields for multipart data is given by:

multipart-type := "multipart” "/" nultipart-subtype
“;" "boundary" "=" boundary
mul ti part-subtype := "mixed" / "parallel" / "digest"

/| "alternative" / extension-token

Borenstein & Freed [Page 31]

RFC 1521 MIME September 1993

7.3 TheMessage Content-Type

It is frequently desirable, in sending mail, to encapsulate another mail message. For this
common operation, a special Content-Type, "message”, is defined. The primary subtype,
message/rfc822, has no required parameters in the Content-Type field. Additional
subtypes, "partia” and "External-body"”, do have required parameters. These subtypes
are explained below.

NOTE: It has been suggested that subtypes of message might be defined
for forwarded or rejected messages. However, forwarded and rejected
messages can be handled as multipart messages in which the first part
contains any control or descriptive information, and a second part, of type
message/rfc822, is the forwarded or reected message. Composing
rejection and forwarding messages in this manner will preserve the type
information on the original message and allow it to be correctly presented
to the recipient, and hence is strongly encouraged.

As stated in the definition of the Content-Transfer-Encoding field, no encoding other than
"7hit", "8bit", or "binary" is permitted for messages or parts of type "message”. Even
stronger restrictions apply to the subtypes "message/partia” and "message/external-
body", as specified below. The message header fields are aways US-ASCII in any case,
and data within the body can still be encoded, in which case the Content-Transfer-
Encoding header field in the encapsulated message will reflect this. Non-ASCII text in
the headers of an encapsulated message can be specified using the mechanisms described
in [RFC-1522].

Mail gateways, relays, and other mail handling agents are commonly known to ater the
top-level header of an RFC 822 message. In particular, they frequently add, remove, or
reorder header fields. Such alterations are explicitly forbidden for the encapsulated
headers embedded in the bodies of messages of type "message.”

7.3.1 The Message/rfc822 (primary) subtype

A Content-Type of "message/rfc822" indicates that the body contains an encapsulated
message, with the syntax of an RFC 822 message. However, unlike top-level RFC 822
messages, it is not required that each message/rfc822 body must include a "From",
"Subject”, and at least one destination header.

It should be noted that, despite the use of the numbers "822", a message/rfc822 entity can
include enhanced information as defined in this document. In other words, a
message/rfc822 message may be a MIME message.

7.3.2 The Message/Partial subtype

A subtype of message, "partial”, is defined in order to allow large objects to be delivered

as several separate pieces of mail and automatically reassembled by the receiving user
agent. (The concept is similar to IP fragmentation/reassembly in the basic Internet

Borenstein & Freed [Page 32]

RFC 1521 MIME September 1993

Protocols.)) This mechanism can be used when intermediate transport agents limit the
size of individua messages that can be sent. Content-Type "message/partial” thus
indicates that the body contains a fragment of alarger message.

Three parameters must be specified in the Content-Type field of type message/partial:
The first, "id", is a unique identifier, as close to a world-unique identifier as possible, to
be used to match the parts together. (In general, the identifier is essentially a message-id;
if placed in double quotes, it can be any message-id, in accordance with the BNF for
"parameter” given earlier in this specification.) The second, "number”, an integer, is the
part number, which indicates where this part fits into the sequence of fragments. The
third, "total”, another integer, is the total number of parts. This third subfield is required
on the final part, and is optional (though encouraged) on the earlier parts. Note also that
these parameters may be given in any order.

Thus, part 2 of a 3-part message may have either of the following header fields:

Cont ent - Type: Message/ Parti al ;
nunber =2; total =3;
i d="oc=j pbeOM2Yt 4s@ hunper . bel | core. cont

Cont ent - Type: Message/ Parti al ;
i d="oc=j pbeOM2Yt 4s@ hunper . bel | core. cont';
nunber =2

But part 3 MUST specify the total number of parts:

Cont ent - Type: Message/ Parti al ;
nunmber =3; total =3;
i d="oc=j pbeOM2Yt 4s@ hunper . bel | core. cont

Note that part numbering beginswith 1, not 0.

When the parts of a message broken up in this manner are put together, the result is a
complete MIME entity, which may have its own Content-Type header field, and thus
may contain any other data type.

Message fragmentation and reassembly: The semantics of a reassembled partial
message must be those of the "inner" message, rather than of a message containing the
inner message. This makes it possible, for example, to send a large audio message as
several partial messages, and still have it appear to the recipient as a simple audio
message rather than as an encapsulated message containing an audio message. That is,
the encapsulation of the message is considered to be "transparent”.

When generating and reassembling the parts of a message/partial message, the headers of

the encapsulated message must be merged with the headers of the enclosing entities. In
this process the following rules must be observed:

Borenstein & Freed [Page 33]

RFC 1521 MIME September 1993

(1) All of the header fields from the initial enclosing entity (part one),
except those that start with "Content-" and the specific header fields
"Message-ID", "Encrypted”, and "MIME-Version", must be copied, in
order, to the new message.

(2) Only those header fields in the enclosed message which start with
"Content-" and "Message-1D", "Encrypted”, and "MIME-Version" must
be appended, in order, to the header fields of the new message. Any
header fields in the enclosed message which do not start with "Content-"
(except for "Message-ID", "Encrypted”, and "MIME-Version") will be
ignored.

(3) All of the header fields from the second and any subsequent messages
will be ignored.

For example, if an audio message is broken into two parts, the first part might look
something like this:

X-Wei rd- Header-1: Foo

From Bill @ost.com

To: joe@t herhost.com

Subj ect: Audio mail

Message- |1 D <i dl1@ost . conp

M Me-Version: 1.0

Content-type: nessage/parti al;
i d=" ABC@ost.com';
number=1; total =2

X-Wei rd- Header-1: Bar

X-Wei rd-Header-2: Hello

Message- |1 D <anot heri d@ oo. conp
M Me-Version: 1.0

Content -type: audi o/ basic

Cont ent -transfer-encodi ng: base64

first half of encoded audi o data goes here. ..
and the second half might look something like this:

From Bill @ost.com
To: joe@t herhost.com
Subj ect: Audio mail
M ME-Version: 1.0
Message- | D <i d2@nost . conp
Content-type: nessage/parti al;
i d="ABC@ost . conl'; nunber=2; total =2

second hal f of encoded audi o data goes here...

Borenstein & Freed [Page 34]

RFC 1521 MIME September 1993

Then, when the fragmented message is reassembled, the resulting message to be
displayed to the user should ook something like this:

X-Wei rd- Header-1: Foo

From Bill @ost.com

To: joe@t herhost.com

Subj ect: Audio mail

Message- | D <anot heri d@ oo. conp
M Me-Version: 1.0

Content -type: audi o/ basic

Cont ent -transfer-encodi ng: base64

. first half of encoded audi o data goes here. ..
. second half of encoded audi o data goes here...

Note on encoding of MIME entities encapsulated inside message/partial entities:
Because data of type "message’ may never be encoded in base64 or quoted-printable, a
problem might arise if message/partial entities are constructed in an environment that
supports binary or 8-bit transport. The problem is that the binary data would be split
into multiple message/partial objects, each of them requiring binary transport. If such
objects were encountered at a gateway into a 7-bit transport environment, there would be
no way to properly encode them for the 7-bit world, aside from waiting for all of the
parts, reassembling the message, and then encoding the reassembled data in base64 or
quoted-printable. Since it is possible that different parts might go through different
gateways, even this is not an acceptable solution. For this reason, it is specified that
MIME entities of type message/partial must always have a content-transfer-encoding of
7-bit (the default). In particular, even in environments that support binary or 8-bit
transport, the use of a content-transfer-encoding of "8bit" or "binary" is explicitly
prohibited for entities of type message/partial.

It should be noted that, because some message transfer agents may choose to
automatically fragment large messages, and because such agents may use different
fragmentation thresholds, it is possible that the pieces of a partial message, upon
reassembly, may prove themselves to comprise a partial message. This is explicitly
permitted.

It should also be noted that the inclusion of a "References’ field in the headers of the
second and subsequent pieces of a fragmented message that references the Message-1d on
the previous piece may be of benefit to mail readers that understand and track references.
However, the generation of such "References’ fields is entirely optional.

Finally, it should be noted that the "Encrypted" header field has been made obsolete by
Privacy Enhanced Messaging (PEM), but the rules above are believed to describe the
correct way to treat it if it is encountered in the context of conversion to and from
message/partial fragments.

Borenstein & Freed [Page 35]

RFC 1521 MIME September 1993

7.3.3 The Message/External-Body subtype

The external-body subtype indicates that the actual body data are not included, but
merely referenced. In this case, the parameters describe a mechanism for accessing the
external data.

When an entity is of type "message/external-body”, it consists of a header, two
consecutive CRLFs, and the message header for the encapsulated message. |f another
pair of consecutive CRLFs appears, this of course ends the message header for the
encapsulated message. However, since the encapsulated message's body is itself
external, it does NOT appear in the area that follows. For example, consider the
following message:

Content-type: nessage/ external - body;
access-type=local -file;
nanme="/u/ nsb/ Me. gi f"

Content-type: image/gif
Content-1D: <id42@uppyl ake. bel | core. conp
Cont ent - Transf er - Encodi ng: bi nary

THIS I S NOT REALLY THE BODY!

The area at the end, which might be called the "phantom body", is ignored for most
external-body messages. However, it may be used to contain auxiliary information for
some such messages, as indeed it is when the access-type is "mail-server”. Of the
access-types defined by this document, the phantom body is used only when the access-
typeis"mail-server". Inal other cases, the phantom body isignored.

The only always-mandatory parameter for message/external-body is "access-type"; al of
the other parameters may be mandatory or optional depending on the value of access-

type.

ACCESSTYPE -- A case-insensitive word, indicating the supported
access mechanism by which the file or data may be obtained. Values
include, but are not limited to, "FTP', "ANON-FTP", "TFTP", "AFS",
"LOCAL-FILE", and "MAIL-SERVER". Future vaues, except for
experimental values beginning with "X-", must be registered with IANA,
as described in Appendix E .

In addition, the following three parameters are optional for ALL access-types.
EXPIRATION -- The date (in the RFC 822 "date-time" syntax, as

extended by RFC 1123 to permit 4 digits in the year field) after which the
existence of the external datais not guaranteed.

Borenstein & Freed [Page 36]

RFC 1521 MIME September 1993

SIZE -- The size (in octets) of the data. The intent of this parameter is to
help the recipient decide whether or not to expend the necessary resources
to retrieve the external data. Note that this describes the size of the datain
its canonical form, that is, before any Content-Transfer-Encoding has been
applied or after the data have been decoded.

PERMISSION -- A case-insensitive field that indicates whether or not it
is expected that clients might also attempt to overwrite the data. By
default, or if permission is "read", the assumption is that they are not, and
that if the data is retrieved once, it is never needed again. |If
PERMISSION is "read-write", this assumption is invalid, and any local
copy must be considered no more than a cache. "Read" and "Read-write"
are the only defined values of permission.

The precise semantics of the access-types defined here are described in the sections that
follow.

The encapsulated headers in ALL message/external-body entities MUST include a
Content-1D header field to give a unique identifier by which to reference the data. This
identifier may be used for cacheing mechanisms, and for recognizing the receipt of the
data when the access-type is "mail-server".

Note that, as specified here, the tokens that describe external-body data, such as file
names and mail server commands, are required to be in the US-ASCII character set. If
this proves problematic in practice, a new mechanism may be required as a future
extension to MIME, either as newly defined access-types for message/external-body or
by some other mechanism.

As with message/partial, it is specified that MIME entities of type message/exter nal-body
must always have a content-transfer-encoding of 7-bit (the default). In particular, even
in environments that support binary or 8-bit transport, the use of a content-transfer-
encoding of "8hit" or "binary" is explicitly prohibited for entities of type
message/exter nal-body.

7.3.3.1 The"ftp" and "tftp" access-types

An access-type of FTP or TFTP indicates that the message body is accessible as a file
using the FTP [RFC-959] or TFTP [RFC-783] protocols, respectively. For these access-
types, the following additional parameters are mandatory:

NAME -- The name of the file that contains the actual body data.

SITE -- A machine from which the file may be obtained, using the given
protocol. This must be afully qualified domain name, not a nickname.

Borenstein & Freed [Page 37]

RFC 1521 MIME September 1993

Before any data are retrieved, using FTP, the user will generaly need to be asked to
provide a login id and a password for the machine named by the site parameter. For
security reasons, such an id and password are not specified as content-type parameters,
but must be obtained from the user.

In addition, the following parameters are optional:

DIRECTORY -- A directory from which the data named by NAME
should be retrieved.

MODE -- A case-insensitive string indicating the mode to be used when
retrieving the information. The legal values for access-type "TFTP' are
"NETASCII", "OCTET", and "MAIL", as specified by the TFTP protocol
[RFC-783]. The legal vaues for accesstype "FTP' are "ASCII",
"EBCDIC", "IMAGE", and "LOCALN" where "n" is a decima integer,
typically 8. These correspond to the representation types "A" "E" "I" and
"L n" as specified by the FTP protocol [RFC-959]. Note that "BINARY™"
and "TENEX" are not valid values for MODE, but that "OCTET" or
"IMAGE" or "LOCALS8" should be used instead. IF MODE is not
specified, the default value is "NETASCII" for TFTP and "ASCII"
otherwise.

7.3.3.2 The "anon-ftp" access-type

The "anon-ftp" access-type isidentical to the "ftp" access type, except that the user need
not be asked to provide a name and password for the specified site. Instead, the ftp
protocol will be used with login "anonymous' and a password that corresponds to the
user’s email address.

7.3.3.3 The"local-file" and "afs" access-types

An access-type of "local-file" indicates that the actual body is accessible as a file on the
local machine. An access-type of "afs' indicates that the file is accessible via the global
AFSfile system. In both cases, only a single parameter is required:

NAME -- The name of the file that contains the actual body data.

The following optional parameter may be used to describe the locality of reference for
the data, that is, the site or sites at which the file is expected to be visible:

SITE -- A domain specifier for a machine or set of machines that are
known to have access to the data file. Asterisks may be used for wildcard
matching to a part of adomain name, such as"*.bellcore.com”, to indicate
a set of machines on which the data should be directly visible, while a
single asterisk may be used to indicate a file that is expected to be
universally available, e.g., viaaglobal file system.

Borenstein & Freed [Page 38]

RFC 1521 MIME September 1993

7.3.3.4 The "mail-server" access-type

The "mail-server" access-type indicates that the actual body is available from a mail
server. The mandatory parameter for this access-typeis:

SERVER -- The email address of the mail server from which the actua
body data can be obtained.

Because mail servers accept a variety of syntaxes, some of which is multiline, the full
command to be sent to a mail server is not included as a parameter on the content-type
line. Instead, it is provided as the "phantom body" when the content-type is
message/external-body and the access-type is mail-server.

An optional parameter for this access-typeis:

SUBJECT -- The subject that is to be used in the mail that is sent to
obtain the data. Note that keying mail servers on Subject lines is NOT
recommended, but such mail servers are known to exist.

Note that MIME does not define a mail server syntax. Rather, it allows the inclusion of
arbitrary mail server commands in the phantom body. Implementations must include the
phantom body in the body of the message it sends to the mail server address to retrieve
the relevant data.

It isworth noting that, unlike other access-types, mail-server access is asynchronous and
will happen at an unpredictable time in the future. For this reason, it is important that
there be a mechanism by which the returned data can be matched up with the original
message/external-body entity. MIME mailservers must use the same Content-1D field on
the returned message that was used in the origina message/external-body entity, to
facilitate such matching.

Borenstein & Freed [Page 39]

RFC 1521 MIME September 1993

7.3.3.5 Examples and Further Explanations

With the emerging possibility of very wide-area file systems, it becomes very hard to
know in advance the set of machines where afile will and will not be accessible directly
from the file system. Therefore it may make sense to provide both afile name, to be tried
directly, and the name of one or more sites from which the file is known to be accessible.
An implementation can try to retrieve remote files using FTP or any other protocol, using
anonymous file retrieval or prompting the user for the necessary name and password. |f
an externa body is accessible via multiple mechanisms, the sender may include multiple
parts of type message/external-body within an entity of type multipart/alternative.

However, the external-body mechanism is not intended to be limited to file retrieval, as
shown by the mail-server access-type. Beyond this, one can imagine, for example, using
avideo server for external references to video clips.

If an entity is of type "message/externa-body", then the body of the entity will contain
the header fields of the encapsulated message. The body itself is to be found in the
external location. This means that if the body of the "message/externa-body" message
contains two consecutive CRLFs, everything after those pairsis NOT part of the message
itself. For most message/external-body messages, this trailing area must ssimply be
ignored. However, it is a convenient place for additional data that cannot be included in
the content-type header field. In particular, if the "access-type" value is "mail-server”,
then the trailing area must contain commands to be sent to the mail server at the address
given by the value of the SERVER parameter.

The embedded message header fields which appear in the body of the message/external-
body data must be used to declare the Content-type of the external body if it is anything
other than plain ASCII text, since the external body does not have a header section to
declare its type. Similarly, any Content-transfer-encoding other than "7bit" must also be
declared here. Thus a complete message/external-body message, referring to a document
in PostScript format, might look like this:

From Wonever

To: Sonmeone

Subj ect: what ever

M ME-Version: 1.0

Message- | D <i dl@ost. conp

Content-Type: nultipart/alternative; boundary=42
Content-1D: <i dOO1@uppyl ake. bel | core. cone

--42

Cont ent - Type: nessage/ ext er nal - body;
nane="BodyFor nat s. ps";
site="t hunper. bel | core. cont;
access-type=ANON- FTP;
di rectory="pub";

Borenstein & Freed [Page 40]

RFC 1521 MIME September 1993

node="i nage";
expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

Content-type: application/postscript
Content-1D: <id4d2@uppyl ake. bel | core. conr

--42
Cont ent - Type: nessage/ ext er nal - body;
nanme="/u/ nsb/witing/rfcs/ RFC-M ME. ps";
site="t hunper. bel | core. conf
access-type=AFS
expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

Content-type: application/postscript
Content-1D: <id4d2@uppyl ake. bel | core. conr

--42

Cont ent - Type: nessage/ ext er nal - body;
access-type=nail - server
server="1listserv@ogus. bitnet";
expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

Content-type: application/postscript
Content-1D: <id4d2@uppyl ake. bel | core. conr

get RFC-M ME. DOC

--42--

Note that in the above examples, the default Content-transfer-encoding of "7bit" is
assumed for the external postscript data.

Like the message/partial type, the message/externa-body type is intended to be
transparent, that is, to convey the data type in the external body rather than to convey a
message with a body of that type. Thus the headers on the outer and inner parts must be
merged using the same rules as for message/partial. In particular, this means that the
Content-type header is overridden, but the From and Subject headers are preserved.

Note that since the external bodies are not transported as mail, they need not conform to
the 7-bit and line length requirements, but might in fact be binary files. Thus a Content-
Transfer-Encoding is not generally necessary, though it is permitted.

Note that the body of a message of type "message/external-body"” is governed by the
basic syntax for an RFC 822 message. In particular, anything before the first consecutive
pair of CRLFs is header information, while anything after it is body information, which
isignored for most access-types.

The formal grammar for content-type header fields for data of type message is given by:

Borenstein & Freed [Page 41]

RFC 1521 MIME September 1993

nessage-type := "message" "/" nmessage-subtype

nmessage- subtype : = "rfc822"
"partial" 2#3parti al - param
/ "external -body" 1*external -param
/ extension-token

partial - param : = (";" "id" "=" val ue)
[(";" "nunber" "=" 1*DIAT)
[(";" "total" "=" 1*DIAT)
; 1d & nunber required; total required for |ast part
ext ernal - param : = (";" "access-type" "=" atype)
[(";" "expiration" "=" date-tinme)
; Note that date-tinme is quoted
[(";" "size" "=" 1*DIGAT)
[(";" "permission" "=" ("read" / "read-wite"))
; Permission is case-insensitive
[(";" "name" "=" val ue)
[(";" "site" "=" val ue)
/(" "dir" "=" val ue)
[(";" "node" "=" val ue)
[(";" "server" "=" val ue)
[(";" "subject" "=" val ue)

; access-type required; others required based on access-type
atype := "ftp" / "anon-ftp" / "tftp" / "local-file"

/| "afs" / "mmil-server" / extension-token
; Case-insensitive

Borenstein & Freed [Page 42]

RFC 1521 MIME September 1993

7.4 TheApplication Content-Type

The "application" Content-Type is to be used for data which do not fit in any of the other
categories, and particularly for data to be processed by mail-based uses of application
programs. This is information which must be processed by an application before it is
viewable or usable to a user. Expected uses for Content-Type application include mail-
based file transfer, spreadsheets, data for mail-based scheduling systems, and languages
for "active" (computational) email. (The latter, in particular, can pose security problems
which must be understood by implementors, and are considered in detail in the
discussion of the application/PostScript content-type.)

For example, a meeting scheduler might define a standard representation for information
about proposed meeting dates. An intelligent user agent would use this information to
conduct a dialog with the user, and might then send further mail based on that dialog.
More generally, there have been several "active' messaging languages developed in
which programs in a suitably specialized language are sent through the mail and
automatically run in the recipient’s environment.

Such applications may be defined as subtypes of the "application” Content-Type. This
document defines two subtypes:. octet-stream, and PostScript.

In general, the subtype of application will often be the name of the application for which
the data are intended. This does not mean, however, that any application program name
may be used freely as a subtype of application. Such usages (other than subtypes
beginning with "x-") must be registered with IANA, as described in Appendix E.

7.4.1 The Application/Octet-Stream (primary) subtype

The primary subtype of application, "octet-stream”, may be used to indicate that a body
contains binary data. The set of possible parameters includes, but is not limited to:

TYPE -- the general type or category of binary data. Thisis intended as
information for the human recipient rather than for any automatic
processing.

PADDING -- the number of bits of padding that were appended to the
bit-stream comprising the actual contents to produce the enclosed byte-
oriented data. Thisisuseful for enclosing a bit-stream in a body when the
total number of bitsisnot amultiple of the byte size.

An additional parameter, "conversions', was defined in [RFC-1341] but has been
removed.

RFC 1341 also defined the use of a "NAME" parameter which gave a suggested file
name to be used if the data were to be written to a file. This has been deprecated in
anticipation of a separate Content-Disposition header field, to be defined in a subsequent
RFC.

Borenstein & Freed [Page 43]

RFC 1521 MIME September 1993

The recommended action for an implementation that receives application/octet-stream
mail is to simply offer to put the data in a file, with any Content-Transfer-Encoding
undone, or perhaps to useit asinput to a user-specified process.

To reduce the danger of transmitting rogue programs through the mail, it is
strongly recommended that implementations NOT implement a path-search
mechanism whereby an arbitrary program named in the Content-Type parameter
(e.g., an "interpreter=" parameter) is found and executed using the mail body as
input.

7.4.2 The Application/PostScript subtype

A Content-Type of "application/postscript” indicates a PostScript program. Currently
two variants of the PostScript language are alowed; the original level 1 variant is
described in [POSTSCRIPT] and the more recent level 2 variant is described in
[POSTSCRIPTZ].

PostScript is a registered trademark of Adobe Systems, Inc. Use of the MIME content-
type "application/postscript” implies recognition of that trademark and all the rights it
entails.

The PostScript language definition provides facilities for internal labeling of the specific
language features a given program uses. This labeling, called the PostScript document
structuring conventions, is very general and provides substantially more information than
just the language level. The use of document structuring conventions, while not required,
is strongly recommended as an aid to interoperability. Documents which lack proper
structuring conventions cannot be tested to see whether or not they will work in a given
environment. As such, some systems may assume the worst and refuse to process
unstructured documents.

The execution of general-purpose PostScript interpreters entails serious security
risks, and implementors are discouraged from simply sending PostScript email
bodiesto " off-the-shelf" interpreters. Whileit isusually safe to send PostScript to a
printer, where the potential for harm is greatly constrained, implementors should
consider all of the following before they add interactive display of PostScript bodies
to their mail readers.

The remainder of this section outlines some, though probably not all, of the possible
problems with sending PostScript through the mail.

Dangerous operations in the PostScript language include, but may not be limited to, the
PostScript operators deletefile, renamefile, filenameforal, and file. File is only
dangerous when applied to something other than standard input or ou